Sensitivity of tissue differentiation and bone healing predictions to tissue properties.
نویسندگان
چکیده
Computational models are employed as tools to investigate possible mechano-regulation pathways for tissue differentiation and bone healing. However, current models do not account for the uncertainty in input parameters, and often include assumptions about parameter values that are not yet established. The aim was to clarify the importance of the assumed tissue material properties in a computational model of tissue differentiation during bone healing. An established mechano-biological model was employed together with a statistical approach. The model included an adaptive 2D finite element model of a fractured long bone. Four outcome criteria were quantified: (1) ability to predict sequential healing events, (2) amount of bone formation at specific time points, (3) total time until healing, and (4) mechanical stability at specific time points. Statistical analysis based on fractional factorial designs first involved a screening experiment to identify the most significant tissue material properties. These seven properties were studied further with response surface methodology in a three-level Box-Behnken design. Generally, the sequential events were not significantly influenced by any properties, whereas rate-dependent outcome criteria and mechanical stability were significantly influenced by Young's modulus and permeability. Poisson's ratio and porosity had minor effects. The amount of bone formation at early, mid and late phases of healing, the time until complete healing and the mechanical stability were all mostly dependent on three material properties; permeability of granulation tissue, Young's modulus of cartilage and permeability of immature bone. The consistency between effects of the most influential parameters was high. To increase accuracy and predictive capacity of computational models of bone healing, the most influential tissue mechanical properties should be accurately quantified.
منابع مشابه
Adipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits
Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF), derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differ...
متن کاملReview Paper: Embryonic Stem Cell and Osteogenic Differentiation
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...
متن کاملمطالعه هیستوپاتولوژیکی ترمیم ضایعات نوک ریشه بدنبال درمان اندودنتیک
This study was perfomed on twenty five teeth which showed radiographic lesions( 6mm over 25 mm). the teeth were arranged in seven different groups and root canal therapy ( by warm Gutta-percha technique) as surgical intervention were performed at various time intervals. In this investigation, histologic studies of the periapical tissues begin shortly after elimination of the root canal system w...
متن کاملترمیم آسیبهای سیستم اسکلتی-عضلانی با استفاده از داربستهای حاوی سلولهای بنیادی مزانشیمی: مقاله مروری
An increase in the average age of the population and physical activities where the musculoskeletal system is involved as well as large number of people suffering from skeletal injuries which impose high costs on the society. Bone grafting is currently a standard clinical approach to treat or replace lost tissues. Autografts are the most common grafts, but they can lead to complications such as ...
متن کاملHealing the Bone
Healing of the bone is different with the other part of the body. Fracture healing is actually a bone regeneration with no scar tissues, where as in wound healing, injured tissue is replaced by connective tissue which became a scar, Traditionally fracture healing is divided in to 4 stages: 1) Stage of inflammation; 2) Stage of soft callus; 3) Stage of hard callus and 4) Stage of remodeling. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 42 5 شماره
صفحات -
تاریخ انتشار 2009